skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Finn, Rose_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT High-redshift ($$z\sim 1$$) galaxy clusters are the domain where environmental quenching mechanisms are expected to emerge as important factors in the evolution of the quiescent galaxy population. Uncovering these initially subtle effects requires exploring multiple dependencies of quenching across the cluster environment, and through time. We analyse the stellar mass functions (SMFs) of 17 galaxy clusters within the GOGREEN and GCLASS surveys in the range $0.8< z<1.5$, and with $$\log {(M/{\rm {M_\odot }})}>9.5$$. The data are fit simultaneously with a Bayesian model that allows the Schechter function parameters of the quiescent and star-forming populations to vary smoothly with cluster-centric radius and redshift. The model also fits the radial galaxy number density profile of each population, allowing the global quenched fraction to be parametrized as a function of redshift and cluster velocity dispersion. We find the star-forming SMF to not depend on radius or redshift. For the quiescent population however, there is $$\sim 2\sigma$$ evidence for a radial dependence. Outside the cluster core ($$R>0.3\, R_{\rm 200}$$), the quenched fraction above $$\log {(M/{\rm {M_\odot }})}=9.5$$ is $$\sim 40{\rm\,\,per\, cent}$$, and the quiescent SMF is similar in shape to the star-forming field. In contrast, the cluster core has an elevated quenched fraction ($$\sim 70{\rm \,\,per\, cent}$$), and a quiescent SMF similar in shape to the quiescent field population. We explore contributions of ‘early mass-quenching’ and mass-independent ‘environmental-quenching’ models in each of these radial regimes. The core is well described primarily by early mass-quenching, which we interpret as accelerated quenching of massive galaxies in protoclusters, possibly through merger-driven feedback mechanisms. The non-core is better described through mass-independent environmental-quenching of the infalling field population. 
    more » « less
  2. Abstract Recent theoretical work and targeted observational studies suggest that filaments are sites of galaxy preprocessing. The aim of the WISESize project is to directly probe galaxies over the full range of environments to quantify and characterize extrinsic galaxy quenching in the local universe. In this paper, we useGALFITto measure the IR 12μm (R12) and 3.4μm (R3.4) effective radii of 603 late-type galaxies in and surrounding the Virgo cluster. We find that Virgo cluster galaxies show smaller star-forming disks relative to their field counterparts at the 2.5σlevel, while filament galaxies show smaller star-forming disks to almost 1.5σ. Our data, therefore, show that cluster galaxies experience significant effects on their star-forming disks prior to their final quenching period. There is also tentative support for the hypothesis that galaxies are preprocessed in filamentary regions surrounding clusters. On the other hand, galaxies belonging to rich groups and poor groups do not differ significantly from those in the field. We additionally find hints of a positive correlation between stellar mass and size ratio for both rich group and filament galaxies, though the uncertainties on these data are consistent with no correlation. We compare our size measurements with the predictions from two variants of a state-of-the-art semi-analytic model (SAM), one which includes starvation and the other incorporating both starvation and ram pressure stripping (RPS). Our data appear to disfavor the SAM, which includes RPS for the rich group, filament, and cluster samples, which contributes to improved constraints for general models of galaxy quenching. 
    more » « less